Home

Home - Support and Resources - Citation

2024. 05Oligo Pools

Massively parallel CRISPR-assisted homologous recombination enables saturation editing of full-length endogenous genes in yeast

Lei Deng, Yi-Lian Zhou, Zhenkun Cai, Jie Zhu, Zenan Li, Zehua Bao

Full Text

ABSTRACT

Performing saturation editing of chromosomal genes will enable the study of genetic variants in situ and facilitate protein and cell engineering. However, current in vivo editing of endogenous genes either lacks flexibility or is limited to discrete codons and short gene fragments, preventing a comprehensive exploration of genotype-phenotype relationships. To enable facile saturation editing of full-length genes, we used a protospacer adjacent motif-relaxed Cas9 variant and homology-directed repair to achieve above 60% user-defined codon replacement efficiencies in Saccharomyces cerevisiae genome. Coupled with massively parallel DNA design and synthesis, we developed a saturation gene editing method termed CRISPR-Cas9- and homology-directed repair-assisted saturation editing (CHASE) and achieved highly saturated codon swapping of long genomic regions. By applying CHASE to massively edit a well-studied global transcription factor gene, we found known and unreported genetic variants affecting an industrially relevant microbial trait. The user-defined codon editing capability and wide targeting windows of CHASE substantially expand the scope of saturation gene editing.

Associated articles

Dynegene Next-Gen Synthesis: Powering Biotech Revolution With Nucleic Acids

Contact Us

Tel: 400-017-9077

Address: Floor 2, Building 5, No. 248 Guanghua Road, Minhang District, Shanghai

Email: zhengyuqing@dynegene.com

Follow Us

Copyright © 2025 Shanghai Dynegene Technologies Co., Ltd.
All rights reserved.   

Website Map I Privacy Policy